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Abstract— Belief propagation (BP)-based stereo matching has
popular owing to its regularity and ability to yield promis-
ing results. Some commonly observed hardware-implementation
challenges pertaining to the use of this algorithm are large mem-
ory requirements and trade-offs between speed and chip area,
along with an increasing disparity range. The paper presents a
hardware- and memory-efficient architecture for building a BP-
based disparity estimation system capable of overcoming issues
associated with large disparity ranges. The proposed architecture
is memory-efficient owing to the regularity of its underlying
algorithm. In addition, the improved hardware efficiency can
be attributed to processing element modifications to demonstrate
shareable characteristics. Results obtained in this study reveal a
67.8% reduction in required memory corresponding to a time–
area term complexity of O(L(l ogL)2), where L denotes the
disparity range. This result is in stark contrast to the O(L2l ogL)
and O(L2) complexities observed in extant studies. Compared to
state-of-the-art implementations, the proposed architecture offers
an 86.2% gate count reduction for message update units at
a disparity range of 512. These results confirm the proposed
architecture’s suitability for use in large disparity scenarios.

Index Terms— Belief propagation media (BP-M), tile-based
belief propagation, memory-efficient architecture, stereo match-
ing, disparity estimations, VLSI circuit design.

I. INTRODUCTION

STEREO matching remains an important issue in com-
puter vision. The demand for high-resolution depth maps

continues to increase, especially from an automotive and
autonomous application viewpoint. Full-HD resolution (1920
× 1080 px) can be considered is a minimum display common
requirement nowadays, even as 4K2K displays gain increasing
popularity. Moreover, three-dimensional display applications
are becoming more prevalent by the day. Therefore, the attain-
ment of high video and disparity resolutions with reason-
able depth granularity remains an important ongoing research
trend. Among available implementation platforms, application-
specific integrated circuits (ASICs) and field-programmable
gate arrays (FPGAs) afford high energy efficiencies, which
is crucial for mobile and wearable devices. ASICs are more
compact, and this makes this platform appropriate for use in
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Fig. 1. SRAM sizes of different architecture and depth labels. The SRAM
sizes of the SGM engine [12], NG-fSGM [13], and MBESGM [14] are
simulated based on their reports.

wearable devices. Stereo-matching methods can be categorized
as local and global, as described in [1]. In general, local
methods, such as those described in [2], [3] are cost-effective.
Other examples of such methods are described in [4]–[6].
There exist several algorithms, such as those referred to as
non-local [7] and semi-global matching [8] methods, which
reference conditional information over entire images. The
loopy belief propagation (BP) [4], graph cut [5], and tree
reweighted message passing [6] techniques of stereo-matching
algorithms have been adequately discussed because they yield
promising results. In addition, deep-learning-based methods,
such as CSPN [9] and PSMNet [10], have recently attracted
significant research attention. They benefit from being able
to adapt to learning and inferencing data domains. However,
Suleiman et al. [11] demonstrated that handcrafted features
are up to ten times as energy-efficient as learned features.
The existence of a large disparity is a major challenge facing
hardware implementations in terms of both memory utilization
and hardware efficiency. Memory size is directly proportional
to the disparity range L, a large value of which implies the
accurate representation of 3D information, which is a crucial
requirement in high-resolution applications.

Recently, light-field belief propagation (LFBP) [15],
the semi-global matching (SGM) engine [12], and NG-
fSGM [13] have been proposed as dedicated hardware for
stereo matching with integer disparity ranges of 64, 128, and
128, respectively. In these designs, SRAM occupies 50% of
the available area; hence, addressing large disparity scenarios
is considerably challenging. Memory- and bandwidth-efficient
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SGM (MBESGM) [14] features a memory-efficient archi-
tecture with the incompleteness and truncated techniques.
Large numbers of disparity candidates are all used in the
previous architecture to compute the optimization process,
resulting in significant computational complexity. Since
computation complexity increases with disparity, hardware
efficiency becomes critically important in large disparity
stereo-matching hardware designs. The BP algorithm is the
most regular in computation; therefore, making it hardware-
friendly, and suitable for very large-scale integration (VLSI)
implementation. However, there exist two problems associated
with the VLSI implementation of BP algorithms. The first is a
serious memory problem, which causes a major obstruction to
VLSI implementation [16]. Message-compression techniques
have been proposed by Yu et al. [17] to offset this problem.
Block- [16] and tile-based [18] BPs have also been proposed
to significantly reduce memory demands. Fig. 1 compares
the memory requirements of different algorithms. Except for
MBESGM [14], all these existing architecture require more
than 1, 500 kB of SRAM to support scenarios with a depth
label of 512. A tile-based BP disparity-estimation system has
been proposed in [15] for full-HD (1920 × 1080 px) resolution
displays with a disparity range of 64. It exemplifies the severity
of the memory problem, as over 50% of the chip area is
occupied by SRAM. This problem becomes more challenging
with increasing disparity range. Along with large memory
consumption, an increasing disparity range necessitates a
tradeoff between speed and hardware complexity, as described
in Table I.

Major contributions of the proposed architecture include

1) Efficient hardware implementation of large label-count
belief propagation;

2) Memory-efficient message passing; and
3) Fast and hardware-efficient message updating.

The remainder of this manuscript is organized as follows.
Section II addresses the problem at hand and briefly reviews
several extant works. The proposed architecture is discussed in
Section III. Experimental results, discussion, and conclusions
drawn from this research are presented in Sections IV–VI,
respectively.

II. PREVIOUS WORK

A. Global Methods Overview

In general, global methods outperform local methods.
Global algorithms optimize a Markov random field (MRF)
using techniques such as graph cuts, tree-reweight message
passing(TRW-S) [20], (loopy) belief propagation (BP), and
SGM [12]. Among these, BP and SGM are considered more
hardware-friendly owing to their demonstrated regularities.
One of the more critical problems associated with global
methods is computation complexity. GPU [21], FPGA [22],
[23], and ASIC implementations [15], [18], [24] have been
proposed to tackle these problems. The SGM engine [12]
features partitioned progress that only stores in-block aggre-
gated cost in the on-chip SRAM. Neighbor-guided SGM
(NG-fSGM) [13] selects particular candidates randomly and
candidates guided from neighboring pixels, which makes the

computation and SRAM size independent of the label counts.
However, it requires more than 1, 500 kB SRAM for process-
ing under a disparity range of 512. MBESGM [14] employs
incompleteness and inaccuracy techniques to further reduce
on-chip memory requirements. As all disparity candidates
are processed, computations under a large disparity range
become impractical. Thus, an optimal architecture for large
label counts should account for both on-chip memory size
and computational complexity. Because mobile devices require
high energy efficiencies, ASIC implementations are considered
more appropriate in mobile applications. This study considers
BP as the target algorithm owing to its regular data flow
and simple processes. Both features are important from a
hardware-implementation viewpoint.

B. Belief Propagation Implementation Overview

BP is a global energy minimization algorithm for labeling
problems, and it has been employed in such applications as
disparity search [25] [26] [18], optical flow [26], denois-
ing [25], image inpainting [18], image registration [27], and
structure from motion [28]. The BP energy function comprises
unitary and pairwise terms described as follows.

{l} = argmin
l p∈L

⎧⎨
⎩

∑
p∈P

Ed
(
l p

) +
∑

(p,q)∈Np

Es
(
l p, lq

)
⎫⎬
⎭ , (1)

Here, l, l p and lq denote the generated label with low-
est energy, label value of the pixel p, and label value of
neighboring pixel q , respectively. Some studies identify the
unitary and pairwise terms as data and smoothing terms,
respectively. The proposed architecture is inspired by a tile-
based BP approach [18], which is one of the more suitable
architectures for BP hardware implementation with reasonable
on-chip memory requirements.

Fig. 2 depicts a block diagram of the proposed architecture
comprising a cost-computation processing element (PE) pool,
message update PE pool, message buffer, and cost buffers.
The message and cost buffers are stored in on-chip SRAM.
The memory- and hardware-efficiency issues are addressed in
the message-passing data flow and message-updating blocks,
respectively.

The BP energy function can be expressed as

E( f ) =
∑

(p,q)∈N

V ( f p, fq ) +
∑
p∈P

Dp( f p) (2)

1) Message Passing Data Flow: A BP-based disparity
estimation algorithm, BP media (BP-M) [4], is used widely
as a depth estimation method, providing a global energy
minimization solution to the stereo matching algorithm. The
concept of BP-M is shown in Fig. 4; each node receives
messages from each of four neighbors and maintains its own
data cost. Eq. 3 illustrates the message passing from the node
(i, j) to the node (i + 1, j). After the message updating
block processes the message M∗

Le f t (i ; j), it is translated into
MLe f t (i ; j) as shown in Eq. 4, where MLe f t (i ; j) represents
the message from left for node (i, j) and C(i ; j) denotes the
data cost of a specific pixel. There are four direction message

Authorized licensed use limited to: National Taiwan University. Downloaded on December 01,2021 at 05:48:39 UTC from IEEE Xplore.  Restrictions apply. 



WU et al.: HARDWARE- AND MEMORY-EFFICIENT ARCHITECTURE FOR DISPARITY ESTIMATION OF LARGE LABEL COUNTS 3681

TABLE I

SUMMARY OF VARIOUS ARCHITECTURES. L IS THE DISPARITY RANGE AND T IS THE TRUNCATED NUMBER FOR THE SMOOTHING TERM

Fig. 2. Block diagram of the proposed belief propagation engine.
This engine consists of three components: the cost computation PE pool,
the message update PE pool, and the message buffer and cost buffer (The
message buffer and cost buffer are stored in SRAM).

Fig. 3. (a) The passing mode and (b) the deterministic mode for a BP
algorithm.

sets and one cost set for each pixel and each set consists of
L elements. BP-M requires O(4W H L) SRAM, where W ,
H , and L are the width, height, and disparity range of the
image, respectively. Tile-based approaches such as [18] and
[15], and block-based approaches [16] keep partial data in
SRAM only which reduces the size to O(4T 2 L), where T is
the diameter of the tile or block size. Although constant-space
BP [29] has been proposed to solve the memory issue, its
memory size is irrelevant, relative to the disparity range, as it
requires a further process to reconstruct the original energy
function. The disparity range related reconstruction process
makes this implementation unsuitable for large disparity sce-
narios. The above-mentioned idea is inspired by the hierarchy
belief propagation [30]. The message updating block will be
introduced in the next subsection. Although each row can

Algorithm 1 Algorithm for Message Passing

Input: C1, C2, . . . , Cn , M Lef t
1 , M Le f t

2 , . . . , M Le f t
n ,

M Right
1 , M Right

2 , . . . , M Right
n ,

MU p
1 , MU p

2 , . . . , MU p
n ,

M Down
1 , M Down

2 , . . . , M Down
n and Passing

direction D ∈ {Le f t, Right, U p, Down}
Output: M1, M2, . . . , Mn

1 for j = 1; j ≤ n do
2 M j = C j + ∑

d /∈D M j
d ;

3 end
4 return M1, M2, . . . , Mn ;

Fig. 4. (a) Framework of BP-M. (b) Detailed message flow of a single node.

process simultaneously during horizontal processing and vice
versa, there exists a high data dependency between adjacent
messages.

M Le f t
T oP E (i ; j) = M Le f t (i ; j) + MU p(i ; j)

+M Down(i ; j) + C(i ; j) (3)

M Le f t
T oP E (i ; j)� = MessageU pdate(M Lef t

T oP E (i ; j)) (4)

The conventional message passing data flow is shown in
Alg. 1. In the BP-based disparity estimation, each pixel
receives four messages from up, down, left, and right neigh-
boring nodes. The relationship between each pixel and its
messages is shown in Fig. 4. In the original BP-M [4] system,
the four direction messages for every pixel label in the entire
set of images are stored in individual memory spaces. The
memory requirements are immense and proportional to the
image size and the disparity range, L.
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Block-based BP [16] has been proposed to solve the large
memory problem by storing messages of a processing block
only. The decrease in performance is severe because of the
lack of information outside the processing block itself. This
technique disconnects the SRAM demands from the size of
the input image. Liang et al. [18] proposed tile-based BP
(TBP), which is derived from the concept of the block-based
BP [16] with boundary message sharing. Moreover, it reduces
the decrease in performance of the block-based BP [16].
A few researchers have leveraged the hardware-friendliness
of tile-based BP to implement their proposed systems on
GPU or FPGA platforms [31]. VLSI implementations have
also been proposed in [32] and [15]. Similar to the block-
based BP, the tile-based BP approach stores the cost value and
messages of the processing tile in the on-chip SRAM while
maintaining the boundary information in the off-chip DRAM.
Although the SRAM size is reduced, it still dominates the
chip size. In a state-of-the-art approach, [15], over 50% of
the chip area is occupied by the SRAM, a problem which
becomes more severe when the disparity range increases. In
the proposed system, we adopt a memory-efficient technique
that reduces the memory size by over 69.5% for L = 512.

2) Message Update Unit: We follow the notation used
in [18] in the remainder of this paper. To find the minimum
energy for each disparity level, the cost function used is

Mt
pq (l) = min

l�∈L

⎧⎨
⎩Es(l, l �) + Ed(l �) +

∑
p�∈Np\q

Mt−1
p� p (l �)

⎫⎬
⎭ . (5)

where Mt
pq (l) is the message passed from pixel p to pixel q

in t − th iteration at level l. The terms that are independent of
l provide the initial guess for the iterative process. They are
combined as H

(
l �
)

which is defined as

H
(
l �
) = Ed(l �) +

∑
p�∈Np\q

Mt−1
p� p (l �). (6)

The term Es is the smoothness penalty. According to
its regularity, the truncated linear model [19] is friendly to
hardware implementation [18] [19] [15] and is defined as

Es
(
l, l �

) = min
l�∈L

(λ
∣∣l − l �

∣∣ , λT ), (7)

where λ is the weight of the smoothness and T is the parameter
that constrains the quantity from increasing. For simplicity,
Eq. 5 can be transformed into

Mt
pq (l) = min

l�∈L

{
Es(l, l �) + H

(
l �
)}

. (8)

The conventional message update process is shown in
Alg. 2. The computational complexity of traditional hardware
implementations (see [4]) is O(L2) where L is the disparity
range. This approach is not practical to implement in hardware
when the label counts L is large, as shown in Fig. 6(a). An
efficient BP implementation, such as [19], has been proposed
to improve the hardware efficiency of our architecture, which
we will refer to as efficient BP (EBP). This two-pass method
is adopted to find the minimum envelope of the disparity
set. Even though this approach is more efficient, its critical
path is directly proportional to the disparity range as shown

Fig. 5. Smoothing term with the truncated linear model.

in Fig. 6(b). This makes EBP unsuitable for large disparities.
To shorten the critical path, a modification in [15] removes
the backward pass of the two-pass method, making its critical
path half the size of EBP. This architecture is implemented
in a seven-stage pipeline with a cost of performance loss as
shown in Fig. 6(d). However, the approach in [15] becomes
impractical when the label count is larger than 64. Existing
methods can be classified into two categories: tree-based
and path-based methods. Tree-based methods [4], [18] have
shorter delays but worse hardware-efficiency. Compared to
tree-based methods, path-based methods [15], [19] attain lower
hardware complexities, but come with longer delays, which
are proportional to the disparity range. Chang et al. [33]
derived a fast belief propagation (FBP) architecture using the
conventional implementation and the following formula:

Mpq (l) = min
(

M Local
pq (l) , MGlobal

pq

)
. (9)

Here, M Local
pq (l) is the minimum value within the non-

truncation region, which is computed in local trees.

M Local
pq (l) = min

l−T ≤l�≤l+T

{
Es(l, l �) + H

(
l �
)}

. (10)

MGlobal
pq is the global minimum constraint, which is indepen-

dent of the disparity level computed in the global tree.

MGlobal
pq = min

l�∈L

{
T λ + H

(
l �
)}

. (11)

In [18], the designed structure was efficient and exhibited
highly parallel properties as shown in Fig. 6(c). Based on these
two properties, we derived our architecture starting from [18].

III. PROPOSED SYSTEM

This chapter introduces the proposed VLSI design for stereo
matching. This system comprises an efficient message updat-
ing PE pool, a matching cost computation PE pool, and buffers
for the messages and pixels of the input images. Because BP
hardware implementations generally suffer from large on-chip
memory and an inefficient computation when the disparity
range is large, our goal was to develop a memory-efficient
message passing technique and a hardware-efficient message
updating method.

A. Memory-Efficient Data Flow

A memory-efficient data flow for message passing is
involved in our proposed system to solve the large memory
problem. We begin by describing the observations of our
analysis. Thereafter, we present our memory-efficient data flow
and derive the corresponding memory banking technique.
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Fig. 6. System structure for (a) original hardware implementation BP-M [4],
(b) efficient hardware implementation EBP [19], (c) proposed architecture in
TBP [18], and (d) architecture in LFBP [15].

Algorithm 2 Algorithm for Message Update
Input: M1, M2, . . . , Mn and smooth equation V (dx , dy)
Output: M New

1 , M New
2 , . . . , M New

n
1 con(ri ) = �;
2 for j = 1; j ≤ n do
3 float minSmooth = 999.0;
4 float minLabel = 0;
5 float T empSmooth = 0;
6 for j = 1; j ≤ n do
7 T empSmooth = Mi + V (di , d j );
8 if (minSmooth) ≥ (T empSmooth) then
9 replace minSmooth with T empSmooth;

10 replace minLabel with i ;
11 end
12 M New

j = minSmooth;
13 end
14 end
15 return M New

1 , M New
2 , . . . , M New

n ;

1) Analysis of a Message Update Module’s Data Flow:
The original data flow for the message update modules is
shown in Fig. 7(a). We adopt the definitions employed in
TBP [18]; thus, the BP processing order is rightward, leftward,
downward, and upward. Cost values do not change during

Fig. 7. Data flow comparison of various implementations. (a) the one
of conventional BP engine, (b) the forward passing of MEMP [34], (c) the
backward passing of MEMP [34], (d) the proposed forward passing, and (e)
the proposed backward passing.

processing as shown in Eq. 3. To reduce the SRAM size, cost
values are computed on-the-fly just as in [15] and [18]. For this
reason, we focus on reducing message storage in this paper.

We summarize our observations in two ways. First, a mes-
sage still occupies the memory because the updated message
of any particular direction has not been generated yet, although
that message is never used again. Both, BP-M and tile-
based architecture replace old messages with corresponding
new messages. Second, messages from the vertical direction
are terminated at the same time while finishing horizontal
processing and verse visa. In addition to combining messages
within the same group, vertical and horizontal groups are
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Fig. 8. Input and output for a message update module. (a) Conventional one in TBP [18], (b) grouping messages into horizontal and vertical, and (c)
the proposed data flow.

able to share the same memory location without conflict. We
followed the aforementioned observation to re-design the data
flow.

2) Proposed Architecture: The original data flow of
TBP [18] is shown in Fig.7(a). Based on the analysis of
MEMP [34], messages in the same group are terminated at
the same time. First, we separate messages into vertical and
horizontal groups as Eq. 12{

MV er. = MU p + MDown

MHor. = MLe f t + MRight
(12)

Through this, the memory requirement can be reduced by
half. However, there are two problems encountered when
implementing the above architecture: how to combine the
messages in the same group, and when to process them.
Messages in the same group cannot be added up directly
because they are generated at different times. Through timing
analysis, we also notice that messages within the same group
are used at the same time in an orthogonal direction process
but not a parallel one. In other words, those messages can
be added up only after parallel processing. Before backward
processing, we have to store another message into the buffer.
In this paper, we follow the definitions employed in TBP [18].
In horizontal processing, we call a processing to the right a
forward passing and to the left a backward passing. Simi-
larly, in vertical processing, we call processing from the top
(respectively, down) to the down (top) as forward (backward)
passing. Combining two messages into one group reduces the
requirement by half, thus we can gain the benefit of summing
up two messages and storing the result in memory. The above-
mentioned architecture is shown in Figs. 7 (b) and (c).

Furthermore, we also observed that vertical and horizontal
messages overlap in the timing slot, causing the proposed
system to allocate two memory spaces to each message.
We further consider memory reduction by eliminating the
timing overlap. If we can postpone saving time one cycle
after a backward passing, another message space is then
unnecessary. By applying the above scheme, two messages
can be stored in the same memory without any conflict.
During forward processing, the message from the last pixel,

MFrom P E (i ; j), is added to its data cost, C(i ; j), and mes-
sages from orthogonal directions, M(i ; j). Consider rightward
passing, for instance, the updated message set, MT oP E (i ; j)�,
passed to the next pixel, MFrom P E (i ; j), is stored in the
line buffer, L B( j), in the same cycle. In the backward
process, the substitution of the combined message, M(i ; j),
is processed except the summation and message update in
the forward one. MFrom P E (i ; j), is added to the value in
the line buffer, L B( j), and then replaces the out-of-date
combined message, M(i ; j), with the updated combined one,
M(i ; j)�. Finally, the computation for the proposed BP reduces
to Eq. 13. Compared to the conventional message update
equation, Eq. 5, memory buffers are reduced from four tile
buffers to one tile buffer and four line buffers. An analysis of
the lifetime is shown in [34], and the detailed architecture is
shown in Figs. 7(d) and (e).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Forward:
L B( j) = MFrom P E (i ; j)
MT oP E (i ; j) = M(i ; j) + MFrom P E (i ; j) + C(i ; j)
MT oP E (i ; j)� = MessageU pdate(MT oP E (i ; j))
Backward:
MT oP E (i ; j) = M(i ; j) + MFrom P E (i ; j) + C(i ; j)
MT oP E (i ; j)� = MessageU pdate(MT oP E (i ; j))
M(i ; j)� = MFrom P E (i ; j) + L B( j)

(13)

The parallelism of the proposed architectures is another
issue we are concerned with. Based on the analysis, this
system requires more than four PEs working simultaneously
to reach the desired specification, i.e., full-HD at 30 fps. The
parallelism of the proposed architecture is similar to those of
TBP [18] and LFBP [15]. That means the parallelism is equal
to the width or the height of the tile as in the LFBP [15]
mentioned above.

An SRAM banking is proposed in [15] to increase the
SRAM accessing bandwidth, as shown in Fig. 9(a). To adopt
the designed memory-efficient data flow, we propose a mem-
ory banking technique as shown in Fig. 9(b). The timing
diagram is shown in Fig. 9(c) and (d). In forward passes,
the message block buffer, M, is read, and the updated message
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Fig. 9. Memory banking technique of the proposed architecture. (a) is
presented in [15], (b) is proposed for this architecture, (c) is a forwarding
passing timing diagram of blocked pixels in (c), and (d) is a forwarding
passing timing diagram of blocked pixels in (c).

Fig. 10. Original mapping and modified mapping for different minimum
operations.

is stored in the corresponding line buffer, LB, in the next cycle.
In backward passes, the message block buffer, M, and the line
buffer, LB, are read; the merged and updated messages are
then stored in the message block buffer, M, in the next block.
This module solves the large on-chip memory issue but does
not address the computational inefficiency. In the next section,
a faster, more hardware-efficient message updating module is
proposed.

B. Fast and Hardware-Efficient Message Update

The message update process is the most computationally
intensive part of a BP engine. As mentioned in the previous
section, this module updates a set of messages from three
incoming message sets and a matching cost set where the
size of each set is the disparity range, L. BP implementa-
tions [18] [15] [19] suffer from hardware inefficiency for large
disparity scenarios. In this section, we utilize regularity to
design a message update PE that is fast and hardware efficient.

1) Observations: Each iteration has four direction passes
for each pixel. The process updates a set of messages whose
sizes are equal to the disparity range, L. Each updated
message is the minimum value for L candidates, as given

Eq. 9. Unlike a stereo matching criterion, the disparity with
sub-pixel accuracy [26] [18] and another applications [25]
is inappropriate to limit untruncated regions to such small
ranges [18] while applying BP algorithms. To preserve the
performance, we follow the suggestion from [29] setting T =
L
8 . That is, T and L are in direct proportion. The smoothing
effect is unapparent, and the advantage of BP optimization
is lost if T is unreasonably limited. Depth maps generated
by different architectures are provided in Section IV. When
the setting for T is not much smaller than L, the complexity
of [18] is O(L2) instead of O(L). Among smoothing functions
discussed in EBP [19], the truncated linear model makes
the implementation more regular. We utilize the regularity to
design the proposed architecture reusing compare results as
LFBP. Unlike existing hardware implementations, minimum
values are computed by individual binary tree structures as
shown in Fig. 6(a) and (c). In the conventional architecture,
each local tree is independent of the others. Based on the trun-
cated linear model, the difference between adjacent messages,
except those belonging to the truncated region, is equivalent,
as follow:

min(H (n − 2) + 2λ, H (n − 3) + 3λ)

= min(H (n − 2), H (n − 3) + λ) + 2λ. (14)

We derive our architecture by exploiting the regularity to
reduce the hardware complexity. Modified mapping operators
are shared among different local trees. The majority of min-
imum operators inside local trees can be removed as shown
in Fig. 10. The critical path is not affected because the delay
is dominated by the global tree, as shown in Fig. 6(c). The
regularity property is only sustained within the same side of
the untruncated region.

min(H (n − 1) + λ, H (n)) �= min(H (n − 1), H (n) + λ)

(15)

To further increase the hardware efficiency, both sides need to
be designed separately. The proposed architecture is presented
in the next section.

2) Proposed Architecture: We derive the proposed
hardware-efficient architecture [35] in three steps. First,
reusable elements are allocated at the leaf level of all local
binary trees reducing the complexity by half. Second, reusable
elements are allocated at all levels of local binary trees,
as shown in Fig. 11(c). The complexity of a local binary tree
is reduced from O(T ) to O(2log2T ). Finally, the architecture
is designed as interleaved to further decrease the complexity
by half. The complexity of a local binary tree reduces from
O(2log2T ) to O(log2T ). The derived procedure is shown
in Fig. 11.

First, reusable components are adopted at the lowest level
of the local binary tree because, from the above-mentioned
observation, every comparator at the lowest level can be
eliminated, except for two comparators near the middle. There-
after, the computational complexity of the local binary tree is
reduced from O(2T ) to O(T ), as shown in Fig. 11(b). Then,
reusable components are adopted at every level of the local
binary tree. We extend the above concept to more than one
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Fig. 11. Local trees structures (a) an original local binary tree in [15], (b) a binary tree after allocating reusable elements in the lowest level, (c) a binary
tree after allocating reusable in all levels, and (d) the proposed architecture with interleaving.

component as given in Eq. 16.

min(H (n − 4) + 4λ, H (n − 5) + 5λ, H (n − 6) + 6λ,

H (n − 7) + 7λ)

= min(H (n − 4), H (n − 5) + λ, H (n − 6) + 2λ,

H (n − 7) + 3λ) + 4λ. (16)

Based on the property of the truncated linear model, each
minimum search operation for neighboring components can be
transformed to facilitate hardware implementation and increase
efficiency. In our example in Eq. 16, the original form can
transform to another one with a difference 4λ, which is
generated at Level 1 of the local tree n−4, depicted as the red
circled sub-tree in Fig. 11(c). We further extend the concept to
higher levels. Beyond this step, the complexity of local trees
is reduced from O(T ) to O(2log2T ), as shown in Fig. 11(c).

Finally, an interleaving technique is adopted in the proposed
architecture. The interleaving procedure is shown in Fig.12.
In the example, the left sub-trees of the local tree n and n + 1
are equivalent but with λ difference. The same is found in the
right sub-trees. We adopt this attribute to further reduce the
complexity of the local tree from O(2log2T ) to O(log2T ).

Leaves in each local tree are of the size of the untruncated
region, 2T − 1, which means there are

⌊ 2T −1
2

⌋
operators in

the lowest level within a traditional local tree. Based on the
properties explained above, we can see that the number of min
operations in the bottom level is 2 × L

2 for two sides of an
untruncated region. Each local tree contributes to one operator
and collects other information from other trees.

Fig. 12. The interleaving procedure for the proposed architecture. The left
sub-tree of adjacent trees can be reused. (a) The local binary tree n and (b)
the local binary tree n + 1. It should be noted that both left sub-trees of the
local tree n and n + 1 are equivalent but with λ difference.

At the upper level, regularity is preserved. A conventional
architecture requires �2 × 2T +1

22 	 operations in each local tree
while the proposed one requires 2 × L

2 operations for “all”
local trees. Interestingly, the total number of operators for
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local trees is equal at each level. Each local tree contains only
one min operator at each level. The height of a local tree is

log2(2T + 1)�.

That is, the number of total operators inside a local tree
is equal to the height of the local tree, 
log2(2T − 1)�. We
mentioned that for T ∝ L, the complexity of a BP processing
element is reduced from O(L2) to O(Llog2(L)). The problem
is how to design the local tree to reach the efficiency we desire.

By contrast, the proposed local tree architecture utilizes
the aforementioned property, as shown in Fig. 11(d), instead
of direct mapping [18], as in Fig. 11(a). In each local tree,
only one minimum operation is required at a single level.
In Fig. 11, we use T = 7 as an example to demonstrate
the difference between the original architecture and the pro-
posed one. In the figure, we color operators in other local
trees. In the given instance, the number of min operators in
the original architecture and that of the proposed one are
fifteen and four, respectively. To further increase hardware
efficiency, the proposed local trees are divided into even and
odd groups. Because of the left-right-side inequality, each
group contributes to the opposing side. As a result, the number
of required min operators for each local tree are reduced
from 2T to 
log2(2T + 1)�. When the value of T is much
smaller than L, such as for T = 1 or T = 2, the complexity
is reduced from L2 to Llog2(L). Despite the fact that the
proposed local tree has a longer critical path than the one
in [18], the total delay is dominated by the global tree. The
proposed architecture does not introduce a delay overhead to
the whole BP processing unit.

One may notice that the numbers of leaves between the
conventional and the proposed architecture in Fig. 11 are not
equal. We added additional nodes in the leaves of the proposed
local trees, which enhance the efficiency of the architecture.
The proposed local tree contributes a min operator per level
and collects information provided by other trees. More pre-
cisely, each local tree collects information from the lower
level of other trees. The information from other local trees
represents the minimum value among hypotheses, where the
number of hypotheses is a power of 2. To fully utilize this
information, we add an additional term that is not inside
the untruncated region. This term makes the local tree a
complete binary tree facilitating the hardware regularity. With
this modification, the Eq. 9 can be rewritten as

Mp→q4 (l)

= min
(
M Local

p→q4 (l) , MGlobal
p→q4 , H (n ± (T +1)) + (T +1)λ

)
.

(17)

The additional term, H (n ± (T + 1)) + (T + 1)λ, is smaller
than MGlobal

p→q4 defined in Eq. 11. This term is added for further
hardware-efficiency and without affecting the correctness.

C. Implementation Details

We added weights based on color differences in mes-
sages which is inspired by HBP [30]. Our color weight is
defined as

δ = 1 − |I (s) − I (t)|
256

, (18)

TABLE II

ERROR RATES OF DIFFERENT ARCHITECTURE WITH DIFFERENT

DATASETS. THE ERROR RATE OF KITTI 2015 [37] IS 3-px ERROR AND

THE ONE OF MIDDLEBURY V3 [36] IS WITH THRESHOLD 2.0. BOTH

VALUES ARE LOWER THE BETTER

where I (s) and I (t) are color values of adjacent pixels s
and t . We estimate the color weight with an only pixel-wise
color difference instead of normalizing with a whole frame
factor, unlike HBP [30]. Our proposed approach simplifies the
original process and is suitable for our on-the-fly procedure.
The divider is implemented with a shifter. The smoothness
term with color weighted becomes

Es
(
l, l �

) = δ × min
l�∈L

(λ
∣∣l − l �

∣∣ , λT ). (19)

IV. EXPERIMENTAL RESULTS

In this section, we analyze the quality effect of each differ-
ent block under consideration. The proposed memory passing
architecture does not affect the performance and message
update block. We implemented the proposed architecture and
counterpart designs in TSMC 28nm technology. All synthesis
results are under the same conditions, the “typical” operation
condition. We use Design Compiler and PrimeTime-PX (Syn-
opsys) to synthesize and analyze power. All SRAM modules
in implementations and experiments are low power single port
SRAMs in TSMC 28nm technology.

A. Qualitative Comparison

We evaluate the performance under two widely adopted
datasets, Middlebury 2014 [36] and KITTI 2015 [37]. We
adopt the absolute difference and Census (AD-Census) as our
data term, Ed . To compare fairly, we implement TBP [18]
and EBP [19] and use the same configuration. The first one
is the Middlebury 2014 dataset [36] which is composed of
indoor scenes. Results are shown in Fig. 13. Compared to other
BP-based architectures, our proposed architecture provides
smoother results and better edge-preserving. The second one
is the KITTI 2015 dataset [37] which is composed of outdoor
scenes. Results are shown in Fig. 14. In these results, our
proposed architecture and EBP obtain smooth results in flat
areas. Our proposed architecture provides incorrect propaga-
tion around the traffic sign in the lower right since added color
weights.

Error rates for different datasets are shown in Table II.
TBP [18] sacrifices quality for computation efficiency by
setting an extremely small untruncated factor, T. Compared
to EBP [19], the proposed architecture preserves better edge
information and provides higher accuracy.

B. Memory-Efficient Message Passing

The computing resource and memory access comparison
between the proposed architecture and its counterpart are
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Fig. 13. Results of various BP structures. From left to right: left view
images, ground truth depth maps, result of EBP, results of TBP and results
of the proposed one. The error threshold for all testing image is 2.

Fig. 14. Testing image pairs for the proposed system of KITTI dataset
frame 108. The first row is EBP, the second row is TBP, and the third row
is the proposed method.

TABLE III

THE COMPUTING RESOURCE AND MEMORY ACCESS COMPARISON (K

IS THE NUMBER OF PE AND L IS THE DISPARITY RANGE). MEMP IS

SHORT FOR MEMORY-EFFICIENT MESSAGE PASSING DATA FLOW [34]

shown in Table III. The number of adders is reduced by
20%, which is the reason for the nearly 20% improvement
in software simulation [34].

The memory requirement of the on-chip memory in different
structures is shown in Fig.15. MEMP [34] attains more than
40% SRAM reduction by grouping two messages into one.
The proposed data path can further reduce the SRAM size
with a block message buffer and K line buffers where K is
the number of PEs. When L increases, the SRAM reduction
by the proposed data flow increases as well. The design can
attain 67.8% SRAM reduction when L = 512.

Fig. 15. SRAM size comparison between TBP [18], MEMP [34] and the
proposed one. Please note that EBP [19] and LFBP [15] have the same size
with TBP [18].

Fig. 16. Number of minimum operations in critical path with different
architectures for various label counts (L) and T = L

8 .

C. Fast Memory Update

Table I shows an analysis comparison between prior hard-
ware architectures and the proposed one. The short delay
characteristic of tree-based methods BPM [4] and TBP [18] is
retained in the proposed architecture. Compared to path-based
methods EBP [19] and LFBP [15], tree-based architectures
are more suitable for large disparity range scenarios due
to their shorter delay. Furthermore, the proposed efficient
structure reduces the complexity from O(L2) to O(Llog2 L)
by eliminating redundancies. Critical paths are proportional to
the disparity range in architecture EBP [19] and LFBP [15]
both of which are not suitable for BP hardware implementation
with large disparity ranges.

Minimum operators dominate the area of the BP processing
element. Path-based architectures [15], [19] require fewer
operators but are not suitable for large disparity ranges due
to their long critical paths. Among tree-based methods, the
proposed architecture requires fewer operators reflecting its
gate count reduction.
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Fig. 17. Minimum operations comparison for different architectures with
various T values (the label count is 512).

Fig. 18. Synthesis results of various message update PE architectures
at L = 128. The format of the data label is (delay, gate count).

To illustrate the critical path issue, the number of minimum
operators on the critical path for each architecture is shown
in Fig. 16. Unlike tree-based implementations [4] [18] and
the proposed one, the operators in the critical path increase
proportionally with increasing disparity range. The critical
paths of tree-based architectures are dominated by the global
tree which has log2L operators in the critical path. Hence,
lines representing tree-based architectures overlap in Fig. 16.

We adopt a time-area term to demonstrate the hardware
efficiency of each architecture. The time-area term is used to
illustrate the trade-off between different architectures, where
the term is defined as time-area term = delay × gate count.

Numbers of minimum operators in different hardware archi-
tectures with various T values are analyzed as shown in Fig. 17
whose disparity range is 512. When T > 1, the proposed
architecture requires fewer minimum operators than the archi-
tecture in [18]. Observe that implementations EBP and LFBP
require fewer minimum operators but have long critical paths,
which are not friendly to large disparity range conditions.
Among these architectures, only the proposed one and the
architectures in [18] and [33] are affected by a different
truncation parameter, T . As the proposed architecture avoids
the redundancies found in TBP, it always has fewer operators,
except for T = 1. When T = 1, the proposed architecture
requires the same operators as FBP, which suggests that
FBP can be considered as a special case of our proposed
architecture with T = 1. FBP indicates a lossy architecture

Fig. 19. Synthesis results of various message update PE architecture at
L = 256. The format of the data label is (delay, gate count).

Fig. 20. Synthesis results of various message update PE architecture at
L = 512. The format of the data label is (delay, gate count).

TABLE IV

SYNTHESIS REPORT OF THE BP PROCESSING ELEMENT FOR THE CONDI-
TIONS L = 256 AND T = 32

TABLE V

SYNTHESIS REPORT OF THE BP PROCESSING ELEMENT UNDER L =
512 AND T = 64 CONDITION

with a decrease in performance and TBP indicates the lossless
one.

The synthesis results for each architecture with a disparity
range of 128 are shown in Fig. 18. The critical paths of
each hardware implementation are shown in the figure too.
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Fig. 21. Gate counts comparison between each architecture. Each archi-
tecture contains four message update PEs and corresponding cost computation
PEs. Note that the advantage of our architecture becomes more obvious
when L becomes larger. The gate count of BPM with 512 disparity range
is simulated.

The synthesis results for each architecture with a disparity
range of 256 and 512 are shown in Fig. 19 and Fig. 20,
respectively. Please note that even though the message update
PEs of LFBP and EBP exhibit larger delays, they have fewer
gate counts. As shown in Fig. 20, there are no data for
the implementation of BPM with a disparity range of 512,
because the synthesis process could not converge within
a week.

A comparison in time-area terms for various architec-
tures are shown in Table IV; as can be seen, the proposed
architecture reduces chip area by 71.9%, as compared to the
lossless TBP with L = 256. It is worth mentioning that
the reduction in minimum operators is approximately equal
to the chip area reduction, and the reduction ratio increases
with increasing disparity range. In Table V, an 82.2% time-
area reduction is achieved. As to the long delay issue, path-
based architectures have worse time-area term performances.
When the disparity range is larger than 64, the proposed
architecture can almost achieve the reductions achieved by
the LFBP and TBP implementations, which are state-of-the-
art implementations of path-based and tree-based architectures.
Results show that the proposed structure attains a better trade-
off between area and critical path when the disparity is larger
than 64. When the disparity range increases, the more obvious
the trade-off advantage of our proposed architecture becomes.
A comparison of the gate counts for tree-based architectures is
depicted in Fig. 21. It is evident that the proposed architecture
offers a greater advantage when the disparity range increases.
The gate count of BPM with a 512 disparity range is simulated
since the synthesis process could not converge in a week.

D. Proposed System

The power required for a different number of depth candi-
dates is shown in Fig. 22. We implemented different archi-
tectures of BP engines using identical synthesis conditions
and SRAM modules. For a fair comparison, we simulated
the SGM [12] engine and NG-fSGM [13] using our message
update module and SRAM modules, because the original

Fig. 22. Relation between the power of each element and the number
of depth candidates with different architectures.

Fig. 23. Relation between the gate count of each element and the number
of depth candidates with different architectures.

disparity range and implementation technology of these archi-
tectures differ from ours. The adopted message update module
for the SGM engine [12] is identical to that of BPM [38], while
the SRAM size is linearly scaled with the disparity range. The
adopted message update module for the NG-fSGM [13] is that
of BPM with a disparity range of 64 because the processing
labels are fixed at each iteration and the SRAM size is fixed at
1568 kB for each disparity range. According to [12] [13], four
and eight PEs are used for the SGM engine and NG-fSGM,
respectively. We also simulated MBESGM according to a
previous report [14] by using eight PEs, similar to NG-fSGM.
The SRAM sizes of the SGM engine [12], NG-fSGM [13], and
MBESGM [14] are simulated based on their reports. Although
MBESGM requires a smaller SRAM size, its computational
complexity increases with the disparity range; thus, the power
consumption is dominated by computing logic.

Gate counts for different numbers of depth candidates are
shown in Fig. 23. Based on previous power analyses, data
of the SGM [12] engine,NG-fSGM [13], and MBESGM [14]
are simulated under identical synthesis conditions. Although
EBP [19] and LPBP [15] exhibit lower computational com-
plexity, the gate counts of these path-based architectures are
dominated by SRAM.

We compare five features to determine the most suitable
architecture for large disparity ranges in a radar chart shown
in Fig. 24. These features are accuracy, speed, hardware
complexity, SRAM size, and hardware efficiency. BPM [4]
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Fig. 24. Comparison between various architecture. These radar charts plot accuracy, speed, SRAM size, hardware complexity and hardware-efficiency.
From the left to the right are BP-M [4], EBP [19], TBP [18], LFBP [15], and the proposed architecture.

TABLE VI

COMPARISON WITH DIFFERENT CONFIGURATION WITH L = 512. THE GATE COUNT OF COST COMPUTATION UNITS IS 3.90 MILLION

and TBP [18] are less hardware efficient but faster, and this
is one of the most important features in real-time application.
Although EBP [19] and LFBP [15] are much slower but more
hardware efficient, their speed reduces their advantage for
large disparity cases. Our architecture, however, exhibits all
three features, i.e. it is faster, more hardware efficient, and
more accurate. The comparison between previous architectures
and the proposed architecture is listed in Table VI.

V. DISCUSSION

In this study, we concentrate on enhancing the hardware
and memory-efficiency of stereo matching. We adopt the
energy functions of TBP [18] and LFBP [15]. A weighted
message [30] preserves discontinuities that are over-smoothed
by global methods. Parameters in the proposed architecture are
fixed; however, adaptive or learned parameters that consider
the input characters can further improve the depth quality.

Moreover, compact energy representations [29] [39] [40]
can further enhance the memory-efficiency of MRF algo-
rithms. Most studies focus on improving the accuracies of
their reconstructed energy functions. Slow and cost expensive
reconstruction processes are crucial problems for real-time
applications and hardware design. A fast and cost-effective
architect can enable these energy compression techniques to
be more practical.

VI. CONCLUSION

A hardware-efficient BP-based architecture is proposed.
It features a memory-efficient data flow and a hardware-
efficient message updating processing element: both features
are beneficial in large disparity stereo matching scenarios. An
integrated system is proposed to demonstrate that this design
is more hardware efficient and more suitable for large disparity
range scenarios than existing systems. The current state-of-the-
art implementations are not practical for disparity ranges larger
than 256 because of the large on-chip memory requirements,

as well as delay issues. To the best of our knowledge,
the proposed system is the first stereo matching engine that
can support full-HD resolution input images and a disparity
range of 512 with less than 1 M B SRAM. Compared to
state-of-the-art implementations, the proposed implementation
offers a 67.8% SRAM reduction and an 86.2% gate count
reduction of message update units at a disparity range of
512—all this without a reduction in performance, and this
is the most computation-intensive aspect of a BP engine. In
the future, higher hardware efficiency could be achieved via
advanced loss energy function compression techniques with a
cost-effective architecture.
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